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Abstract In this paper, an alternative algorithm which uses Wu’s method (differential characteristic set algo-
rithm) for the complete symmetry classification of (partial) differential equations containing arbitrary parameter is
proposed. The classification is determined by decomposing the solution set of determining equations into a union
of a series of zero sets of differential characteristic sets of the corresponding differential polynomial system of the
determining equations. Each branch of the decomposition yields a class of symmetries and associated parameters.
The algorithm makes the classification become direct and systematic. This is also a new application of Wu’s method
in the field of differential equations. As illustrative examples of our algorithm, the complete potential symmetry
classifications of linear and nonlinear wave equations with an arbitrary function parameter and both classical and
nonclassical symmetries of a parametric Burgers equation are presented.

Keywords Differential characteristic set algorithm · Parametric differential equations · Symmetry classification ·
Wu’s method

1 Introduction

1.1 Symmetry-classification problems

The classical symmetry method, originally developed by the Norwegian mathematician Sophus Lie (1842–1899),
leads us to one-parameter groups of transformations acting on the space of independent and dependent variables that
leave the considered (partial) differential equations (PDEs) unchanged. In his work, Lie pointed out that this type
of symmetry group is of great importance to understand and construct solutions of PDEs. Nowadays, Lie’s theory
has been widely used in diverse fields of mathematics and in almost any area of theoretical physics [1, Chap. 1],
[2, Chap. 4].
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In symmetry analysis of PDEs, traditionally, there are two interrelated problems. The first one is finding the max-
imal symmetry admitted by a given system of PDEs. The principal tool for handling this is the classical infinitesimal
algorithm (Lie’s algorithm) developed by Lie. It reduces the problem to finding the corresponding Lie algebra of
infinitesimal vectors (InfVs) whose infinitesimal functions are found as solutions of some over-determined system
of PDEs, called determining equations (DTEs) [1, Sect. 2.4], [2, Sect. 4.1.3], [3, Chap. 2]. In determining sym-
metries, tedious, mechanical computations are involved. Even the determining of symmetries of a modest PDE is
prone to fail, if done with pencil and paper. Programmable computer-algebra systems (CASs) such as Mathematica,
Maple, are extremely useful aids in such computations. Reid [4–7], Schwarz [8,9], Wolf and Brand [10], Mansfield
[11,12], Lisle and Reid [13], Boulier et al. [14,15] and many others (see [16, Chap. 13], [17] and references therein)
partially implemented algorithms and sophisticated symbolic codes in CASs for that purpose. Of them, the CAS
Maple packages rifsimp, diffalg and diffgrob2 are more powerful and widely used. Cartan’s exterior-
form approach [18], Janet–Riquier theory [8,9,19,20], Gröbner base algorithm [11], Rosenfeld–Gröbner algorithm
[14], Ritt–Kolchin differential-algebra method [21,22], formal power-series analysis [6,7], etc can be used to solve
DTEs. However, there are still many open problems in determining symmetries [23]. The second problem is classi-
fying PDEs that admit a prescribed symmetry group. For a family of PDEs with arbitrary parameters θ , finding both
the parameters θ and corresponding maximal set of symmetries Gθ is called the symmetry-classification problem
of the family of PDEs [3, pp. 61–68]. The problem is not only interesting from a purely mathematical point of view,
but also important for practical applications. A variety of PDEs recognized in engineering and physical science
as mathematical models for a diversity of natural phenomena involve arbitrary parameters or constitutive laws.
Naturally, these arbitrary elements are determined experimentally or from a “simplicity criterion.” It often occurs
that one can achieve the same result by the requirement that an arbitrary element be such that the corresponding
model equation admits an additional symmetry. Thus we come to the problem of symmetry classification of PDEs.
For example, the wave equation utt = (F(u)ux )x and the Burgers–KdV equation ut + αuux + βuxx + γ uxxx = 0
contain parameters θ = {F(u)} and θ = {α, β, γ }. The symmetries Gθ of these equations are different as different
values are taken by the parameters θ [24]. The symmetry classification permits us to choose purposefully the proper
form and correct values of such parameters θ so that we get the best modeling of physics problems. This point of
view is supported by the fact that the most successful mathematical models in theoretical and applied science have a
rich symmetry structure. Indeed, the basic equations of modern physics, the wave, Schrödinger, Dirac and Maxwell
equations are distinguished from the whole set of PDEs by their Lie and non-Lie (hidden) symmetries; see, e.g.,
[25, Chap. 2] for more details on symmetry properties of these equations.

The first systematic investigation of the problem of symmetry classification was carried out by Lie [26] for
linear second-order PDEs with two independent variables. Today, there is a considerable literature on the sym-
metry-classification of PDEs of physical interest. Problems of general symmetry classification, except for really
trivial cases, are very difficult. Apart from the difficulties that exist in determining symmetries, we have additional
difficulties in symmetry-classification problems brought about by involved parameters. For this reason, finding an
effective approach to simplification is essentially needed. There are different techniques used to solve symme-
try-classification problems. An accepted common strategy is the utilization of equivalence transformations. The
equivalence relation divides the set of all PDEs of a given family into disjoint classes of equivalent equations. One
chooses a representative for each of the classes, thus simplifying the DTEs. The method, which is quite intricate in
general, is efficient when applied to particular families of PDEs. The second method applied to the problem is the
method of preliminary symmetry classification [27]. One can observe in applications of symmetry analysis that most
symmetries resulting from symmetry classification are, in effect, subgroups of equivalence groups. Accordingly,
one can consider the restricted problem of symmetry classification by taking symmetries from equivalence trans-
formations. Then the problem reduces to the construction of optimal systems of Lie subalgebras. Lie [26] pursued
this way in his classification of ordinary differential equations. This approach was also employed by Akhatov et al.
[27–29] and was called the method of preliminary group classification. Recently, Zhdanov et al. [30,31] developed
a compatibility method for solving the symmetry-classification problem for the nonlinear Schrödinger equation. In
[32,33], Popovych et al. extended the method to the complete symmetry classification of an evolution equation by
further considering the so called additional equivalence transformations.
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In compatibility methods, it seems that inspecting specific classifying equations (or relations) satisfied by param-
eters from DTEs is a critical point. In the preliminary method, finding the optimal systems of Lie subalgebras is a
hard task. Especially, in higher-dimensional and nonlinear cases, it is too difficult to get these systems.

On implementation of symbolic computation codes, the Maple packages rifsimp and diffalg can be used
to perform the complete symmetry classifications [4–7,15,34]. When applied to symmetry classifications, they
yield the classification trees, automatically executed by both diffalg and rifsimp in Maple.

1.2 Characteristic-set method

In mechanical (automatic) theorem-proving fields, there is a fundamental algorithm called the characteristic-set
algorithm (also named Wu’s method) [35], [36, Chap. 3], [37], established by the Chinese mathematician Wu Wen
Tsun in the 1970s, based on Ritt’s theory [22, Chap. 5]. It also has become a fundamental algorithmic theory in
algebraic geometry together with the Gröbner base algorithm [38, Chap. 2]. The method has been applied in a wide
range of science fields, such as mechanical theorem proving [35], optimization problems, surface-fitting problems
in CAGD, Bar Linkage Design, · · · , etc [36, Chap. 36]. The differential analogue of Wu’s method was proposed
in the 1980s [37]. The method is more especially on target to deal with the zero set of a differential polynomial
system (dps) and efficient differential elimination without directly involving the concept of an algebra ideal. The
analysis of zero sets of a dps in the method gives rise to the fundamental notion of a differential characteristic
set (dchar-set) and further principles under the names: Well-ordering principles, Zero-decomposition theorems,
Variety-decomposition theorems, etc.

In Wu’s algorithmic theory, a geometry Theorem is defined as

Definition 1 A theorem consists of a dps called a hypothesis set (denote it as HYP) and a dps called a conclusion
set (denote it as CONC). Then we say that the theorem is TRUE if Zero(HYP) ⊆ Zero(CONC), i.e.,

CONC
∣
∣
HYP=0 = 0. (1)

On mechanical theorem proving, Wu gave the following fundamental Theorem [37].

Theorem 1 (Principle of mechanical theorem proving) For a Theorem with hypothesis set HYP and conclu-
sion set CONC, if DCS is a dchar-set of HYP and Prem(CONC/DCS) = 0, then the theorem is true under the
non-degenerate conditions IS�= 0, where IS is an ISP of the DCS.

The definitions of dchar-set, remainder operator Prem and ISP of a dps, etc are given in the next section. Because
the operator Prem is completely constructive, a Theorem can be proved by computer using Theorem 2.

In usual geometry theorems, the geometric entities and geometric relations are understood to be in the usual
exact geometrical sense so that degeneracies are implicitly discarded. Otherwise the theorem may not be true or
even devoid of meaning. In Theorem 2, IS is an important object. In geometry, IS = 0 corresponds to the degen-
eracy cases of the geometric figure. While, in solving algebraic equations, it represents the solvable conditions of
HYP = 0. The dchar-set algorithm used in the theorem gives a way to get these degenerate cases and check whether
the theorem is true on these degenerate cases.

Although the two subjects (theorem proving and symmetry classification) are far from each other, the formal
similarity statements of both theorem proving and symmetry criterion (compare (1) and (3)) enlighten us that the
method used in mechanical theorem proving can be used to deal with the symmetry-classification problem. We
will show that Wu’s method is more suitable to deal with symmetry-classification problems. And the classifying
equations come from the degeneracy conditions of dchar-sets of the dps obtained from DTEs. This is the critical
step toward obtaining the complete symmetry classifications of a given PDE system.
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1.3 Contents of the paper

In this article, we look into the symmetry-classification problem of a class of PDEs with arbitrary parameters from
a different point of view by employing the differential form of Wu’s method. We will show that Wu’s method
provides us with a direct, systematic algorithm for determining the complete symmetry classification of a class of
PDEs. Therefore, the algorithm will lead to some explicit applications in physics and engineering.

The rest of this paper is organized as follows. In Sect. 2, we give a formal statement of the problem of the
complete symmetry classification of parametric PDEs; in Sect. 3, we first briefly recall the dchar-set algorithm for
a dps and basic results on it. Then, based on the dchar-set algorithm for a dps, an alternative algorithm for the
complete symmetry classification of a system of PDEs is given; in Sect. 4, we present illustrative examples to show
the efficiency of our algorithm; in Sect. 5, we give some concluding remarks and discussions.

2 The complete symmetry-classification problem

In this section, we give a mathematical description of the problem of the complete symmetry classification of a
parametric family of PDEs.

Let X = (x1, x2, . . . , x p) be independent variables and U = (u1, u2, . . . , uq) be differentiable real functions
of X . Use Uα = {uα

i , i = 1, 2, . . . , q}, where α = {α1, . . . , αp} ∈ Z p
+(Z+ is the set of non-negative integers)

and uα
i = ∂ |α|ui

∂x
α1
1 ...∂x

αp
p

, (|α| = α1 + α2 + · · · + αp), denote the derivative terms of U with respect to (w.r.t) X .

Let ∂U = {Uα, α ∈ Z p
+}. The notation KX represents a differential field of functions of X with derivative oper-

ators ∂xi , i = 1, 2, . . . , p and KX [∂U ] is the differential polynomial (d-pol) ring with indeterminates ∂U over
KX . As usual in differential algebra, we use the notation Zero(DPS) for the zero points set (differential algebraic
variety) of a dps DPS ⊂ KX [∂U ] over a universal field of KX . This corresponds to the solution set of the DPEs
DPS = 0. For a d-pol I ∈ KX [∂U ], we use Zero(DPS/I ) to denote the zero points of DPS with I �= 0 , i.e.,
Zero(DPS/I ) = Zero(DPS)\Zero(I ) (See these preliminary concepts and notations in abstract differential algebra
in [21, Chap. 4], [35], [36, Chap. 3], [37]).

Remark For the computation, KX should be considered as a more concrete differential field, such as the differential
field of meromophic functions or its various differential subfields.

We introduce the symmetry-classification problem by considering a family of PDEs

�(θ; X, ∂U ) = 0, (2)

with parameter θ . Without loss of generality, we consider both the case of parameter θ ∈ Km
X for an integer m > 0

(or we consider the problem on a proper extended field) and the case of �(θ; X, ∂U ) ⊂ KX [∂U ]. Let Gθ be the
maximal symmetry of the family of PDEs (2). The intersection of symmetry Gθ for all parameters θ will be called
the kernel of symmetry Gθ , denoted by G0 [3, pp. 66–67]. Because of this definition, the symmetry G0 is admitted
by the family of PDEs (2) for arbitrary parameter θ . It is equivalent to G0 ⊆ Gθ for all parameters θ as G0 and
Gθ are sets of transformations. If for some particular value θ̃ of the parameter θ , G θ̃ �= G0, then the particular
symmetry G θ̃ corresponding to the value θ̃ is called an extension of G0, and θ̃ can be called a specialization of the
parameter θ . According to Lie’s symmetry theory, we know that determining Gθ is equivalent to determining its
InfV

Xθ = �ξθ (X, U ) · ∂x + �φθ (X, U ) · ∂U .

The InfV corresponding to the kernel G0 is denoted by X0, called the kernel algebra. For each specialization θ̃ of
parameter θ , the InfV Xθ̃ constitutes the Lie algebra of the family of PDEs (2) with θ = θ̃ . Hence, if Xθ̃ �= X0,
then Xθ̃ is an extension of X0.

Now we describe the problem of the complete symmetry classification of a family of PDEs.
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The problem of the complete symmetry classification: for a class of PDEs (2) with parameter θ , find the kernel
G0 of the maximal symmetry Gθ , and all specializations θ̃ of the parameter θ , viz. equivalently, determine X0 and
all of its extensions Xθ̃ .

We use PrXθ to denote the prolongation vector of Xθ on the space of X × ∂U . Then, we have

Theorem 2 (Lie’s criterion [1, pp. 161–162], [2, pp. 164–165]) For the family of PDEs (2) with maximal rank, the
operator Xθ is InfV of its symmetry if and only if Zero(�(θ; X, ∂U )) ⊆ Zero(PrXθ (�; X, ∂U )), i.e., the identity

PrXθ (�(θ; X, ∂U))
∣
∣
�(θ;X,∂U)=0 = 0, (3)

holds.

By the standard Lie procedure, we obtain from (3) DTEs of the InfV Xθ and denote these by

DPS(θ) = 0. (4)

Consequently, the question of symmetry classification is converted to the one of solving the parametric PDEs (4).
It is known that the solvability of (4) depends on parameter θ . The equations, satisfied by parameter θ and

obtained from (4), are called the classifying equations of the symmetry-classification problem of the class of PDEs
(2). It is obvious that the specializations θ̃ of parameter θ are the solutions to these classifying equations. Hence, a
key step toward successfully obtaining the complete symmetry classification is to find all such classifying equations
(see examples in Sect. 4).

Summarizing the above discussion, the approach to obtain the complete symmetry classification of a parametric
family of PDEs (2) should include the following key steps:

(a) Finding the kernel algebra X0;
(b) Finding all classifying equations satisfied by the parameters θ ;
(c) Finding all extensions Xθ of the kernel algebra X0 according to solutions of the classifying equations.

The result of the application of the above approach is a list of classifying equations (or representatives of their
solutions) with corresponding algebras.

We show that the first step (a) is the usual one for solving over-determined systems without arbitrary parameters
in determining symmetries of a PDE. Hence existing algorithms and CAS packages can be used to accomplish this
step. The second step (b) and third step (c) are our main points of the paper. We use the dchar-set algorithm to
investigate them.

3 Dchar-set algorithm for the complete symmetry classification

In this section, we first recall basic results on the dchar-set algorithm of a dps, and then present our algorithm for
the complete symmetry classification of a parametric family of PDEs (2). All concepts on dps are taken from [35],
[36, Chap. 3], [37].

3.1 Basic results of the dchar-set algorithm (Wu’s method)

Under a d-pol rank (or order) ≺, a d-pol f ∈ KX [∂U ] is written in the standard form

f = Iα(uα
k0

)n + · · · + I0,

in Wu’s theoretical scheme. Here uα
k0

is the highest derivative term in f and is called leading derivative of f . Iα and
∂ f /∂uα

k0
are called the initial and the separant of f , respectively, and n ∈ Z+ is called the leading power of f . We

use IS or IS(DPS) to denote the product of initials and separants (ISP) of a dps DPS ignoring concrete expressions.
We use IP to denote the integrability polynomials (conditions) obtained from any two d-pols.
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Definition 2 We call d-pol f reduced w.r.t. d-pol g if f does not contain the derivative of the leading derivative of
g and the power of the leading derivative of g in f is less than the leading power of g.

Definition 3 A finite dps

DCS : A1, A2, . . . , As, (5)

is called a differential chain (d-chain) if it satisfies the following two conditions:

(a) A1 ≺ A2 ≺ · · · As , and
(b) A j is reduced w.r.t Ai for i = 1, 2, . . . , j − 1.

A d-pol rank induces a rank on a set of d-chains, called a d-chain rank. We still use ≺ to denote it [37].

Definition 4 A lowest rank d-chain contained in a dps is called a basic set of the dps.

Suppose dp is a d-pol and DCS is a d-chain. Then Wu’s elimination algorithm yields pseudo-reduction formulas
[35,37]. That is, there exist d-pols Qα,i ∈ KX [∂U ] such that

IS · dp =
∑

i,α,dqα,i ∈DCS

Qα,i Dαdqα,i + r, (6)

where d-pol r is reduced w.r.t DCS and is called pseudo-remainder of dp w.r.t d-chain DCS, denoted by
Prem(dp/DCS), i.e., r = Prem(dp/DCS). If DCS = ∅, we understand Prem(dp/DCS) = dp. For a dps DPS, we
use the notation Prem(DPS/DCS), i.e.,

Prem(DPS/DCS) = {Prem(dp/DCS) for dp ∈ DPS}.
The following is the definition of a dchar-set of a dps in Wu’s method.

Definition 5 If for a dps DPS there exists a d-chain DCS verifying the properties (a1), (a2) and (a3) below:

(a1) Zero(DPS) ⊂ Zero(DCS),

(a2) Prem(DPS/DCS) = 0,

(a3) Prem(IP/DCS) = 0 for all IP of DCS,

then the d-chain DCS is called a dchar-set of the DPS.

The characteristic set has many algebraic properties [22,37], such as having a triangular structure and containing
integrability conditions . . ., which make the analysis of the zero set of a dps to be more convenient.

Now we list the basic results used in this article on the dchar-set theory (given by Wu first in [37] and refined in
[39–41]).

Theorem 3 [37] There is an algorithm which permits one to determine a dchar-set DCS for a given finite dps DPS
in a finite number of steps for which the well ordering principle

Zero(DCS/IS) ⊂ Zero(DPS) ⊂ Zero(DCS),

Zero(DPS) = Zero(DCS/IS) ∪ Zero(DPS, IS), (7)

and zero decomposition

Zero(DPS) = ∪kZero(DCSk/ISk), (8)

hold true, where DCSk are the dchar-sets of an extension dps obtained by adding some d-pols in DPS. IS and ISk

are ISPs of these dchar-sets, respectively.
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The algorithm mentioned in the above theorem for determining a dchar-set is called the dchar-set algorithm (also
called the differential form of Wu’s method). It is given through the following algorithmic scheme (W).

Algorithm A: Wu’s algorithm for determining a dchar-set of a dps DPS.

Step0 Step1 · · · Steps
DPS = DPS0 ⊂ DPS1 ⊂ · · · ⊂ DPSs

↓ ↓ ↓ ↓
DBS0 
 DBS1 
 · · · 
 DBSs = DCS

↓ ↓ ↓ ↓
RIS0 ↑ RIS1 ↑ · · · ↑ RISs = ∅,

(W )

in which

Stepi :

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

DBSi a is base set of DPSi and DBSi−1 
 DBSi ,

Ri = Prem((DPSi\DBSi )/DBSi )\{0},
ITi = Prem(IP/DBSi )\{0}, for any IP of DBSi ,

RISi = ITi ∪ Ri ,

DPSi = DPS0 ∪ DBSi−1 ∪ RISi−1, i = 0, 1, 2, . . . , s

where i = 1, 2, . . . , s and DBS−1 = RIS−1 = ∅; s represents the number of calculation steps. The down-arrow
means that computation is continuous in this step and the up-arrow shows the computation turn into next loop step.
The algorithm is implemented in [42, Chap. 42] as part of CAS MMP.

The rank of a d-pol has been playing a key role in Wu’s method mentioned above. A natural choice of such a rank
is the diff-graded lex order which is induced by the total derivative differential form graded lexicographic rank on
derivative terms [22, Chap. 5], [37], [38, Chap. 2], [40]. In all examples in this paper, we take the rank as the d-pol
rank. The decomposition (8) and Algorithm A are the main tools for solving symmetry-classification problems in
this paper.

In the following, we give illustrative examples to show the efficiency of Theorem 3 and Algorithm A in deter-
mining the zero set of an over-determined system and also present the well ordering (triangular) structure of a
dchar-set.

Example 1 Consider a dps

DPS =
{

ξv − τu, ηu − φv + ξx − τt , ηv + u(ηt − φx ) + τx , u2ξu − τv, u2φu − uτu − ηv,

uξv + u2ξt − τx , u(ηu − φv − ξx + τt ) + 2(τv − η), u(φv − τt ) − (τv + ηx − η) + u2φt .

}

in KX [∂U ] with X = (x, t, u) and U = (ξ, φ, η, τ ). Under the basic rank x ≺ t ≺ u ≺ ξ ≺ φ ≺ η ≺ τ , executing
Algorithm A, we obtain a dchar-set of DPS as follows:

DCS =

⎧

⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ξtv, ξt t , ξxt ,

ξt + uξtu,

ξv + uξuv + uξt − ξxv,

ξvv + ξx − ξxx ,

ξx + u2ξuu + 2uξu − ξxx ,

ξx + uξxu − ξxx ;

φv, φt , φu + 2ξt ,

φx + 2uξt ;

ηx + uξx , ηt + uξt ,

uηu − φ + u2ξu,

ηv + uξv + 2u2ξt ;

τx − uξv − u2ξt ,

τt + uξu − ξx − u−1η,

τu − ξv, τv − u2ξu,

⎫

⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

with IS = u. Hence one has

Zero(DPS) = Zero(DCS),

by the well-ordering principle in Theorem 3. This shows the equivalence between solving DPS = 0 and DCS = 0.
The well-ordering (triangular form) structure of the dchar-set DCS is seen from its four parts. The first part consists
of the first eight d-pols involving ξ only. The second part is the next four d-pols only involving ξ and φ. The third
part follows from the four d-pols involving ξ, φ and η. The fourth part is the last four d-pols involving ξ, φ, η and
τ . Obviously, the equivalence and well-ordered (triangular) structure of the dchar-set DCS make the determination
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of Zero(DPS) easier through solving Zero(DCS). The zero set of ξ is obtained from the first part of DCS; the zero
sets of φ, η, τ are obtained from the following parts of the DCS sequentially by using the previously determined
zero sets step by step.

Example 2 A proper example for illustrating the adaptability of the algorithm to a nonlinear case is determining
the nonclassical symmetries of Burgers equation � = ut + uux + uxx = 0. This problem was considered in
[16, pp. 320–321], [43]. Here we give its solution again through use of the dchar-set algorithm, which provides a
different point of view for the same problem. Let X = ∂t + ξ(x, t, u)∂x + η(x, t, u)∂u be InfV for nonclassical
symmetries of the Burgers equation with the invariant surface condition ut − η(x, t, u) + ξ(x, t, u)ux = 0. By the
standard procedure given in (3), we have DTEs DPS=0 for X . Here

DPS = {ξuu, ηt + uηx + ηxx + 2ηξx , ηuu + 2uξu − 2ξξu − 2ξxu, 2ηxu + 2ηξu − ξt + uξx − 2ξξx − ξxx + η}.
Executing the Algorithm A, under the rank x ≺ t ≺ u ≺ ξ ≺ η, we get the decomposition

Zero(DPS) = Zero(DCS1) ∪ Zero(DCS2) ∪ Zero(DCS3).

The three different characteristic sets DCS1, DCS2 and DCS3 of the DPS are given by

DCS1 = {η, u − ξ},
DCS2 = {ξu, ξxx , ηxx , ηu + ξx , ηt + uηx + 2ηξx , η − ξt + uξx − 2ξξx },
DCS3 = {ηuu − u + ξ, 1 + 2ξu, ηt + uηx + ηxx + 2ηξx , 2ηxu − ξt + uξx − 2ξξx − ξxx ,

2ηtu + 2ηx + uξt + 4ηuξx − u2ξx + 2uξξx + 2ξ2
x + ξxt + 2ξξxx + ξxxx }.

Solving the equations of the well-ordered system DCS1 = 0, DCS2 = 0, DCS3 = 0, respectively, we obtain the
infinitesimal functions ξ and η as follows:

Zero(DCS1) = {ξ = u, η = 0},
Zero(DCS2) =

{

ξ = c1t x + c2x + c4t + c5

c1t2 + 2c2t + c3
; η = c1(x − tu) − c2u + c4

c1t2 + 2c2t + c3

}

,

Zero(DCS3) =
{

ξ = −1

2
u + α(x, t), η = 1

4
u3 − 1

2
α(x, t)u2 − β(x, t)u + γ (x, t)

}

,

where α(x, t), β(x, t), γ (x, t) satisfy the PDE system
⎧

⎨

⎩

αt (x, t) + αxx (x, t) + 2βx (x, t) + 2α(x, t)αx (x, t) = 0,

βt (x, t) + βxx (x, t) − γx (x, t) + 2β(x, t)αx (x, t) = 0,

γt (x, t) + γxx (x, t) + 2γ (x, t)αx (x, t) = 0.

(9)

It is interesting that the zero point set Zero(DCS2) corresponds to all finite-dimensional classical symmetries
of the Burgers equation. All nonclassical symmetries of the equation arise from the dchar-sets DCS1 and DCS3.
These three parts correspond to the cases given in [16, pp. 320–321], [43] obtained in a different way. Particularly,
by taking 1). α(x, t) = a0t2 + a1t + a2; 2). α(x, t) = β(x, t) = γ (x, t) = 0; 3). α(x, t) = 0, β(x, t) = a3; 4).
α(x, t) = a4, β(x, t) = γ (x, t) = 0; 5). α(x, t) = 1/x, β(x, t) = γ (x, t) = 0; 6). β(x, t) = γ (x, t) = 0 in (9)
(here ai , i = 0, 1, 2, 3, 4 are arbitrary constants), we get the nonclassical symmetries reported in [16, pp. 320–321].
Solving for different solutions to (9), one gets new nonclassical symmetries of the equation. For example, by taking
α(x, t) = xt−1 in (9), we have new nonclassical symmetries with β(x, t) = (−x2/4 + c2t + c3)t−2, γ (x, t) =
(c1 + c2x − x/2)t−2 in Zero(DCS3). Here ci , i = 1, 2, 3 are arbitrary constants.

3.2 Dchar-set algorithm for the complete symmetry classification

In the following, based on Theorem 3 and the conversion of symmetry classification to determining the zero set
Zero(DPS(θ)) (see (4)), we give our algorithm for the complete symmetry classification of the family of PDEs (2)
through decomposing Zero(DPS(θ)) into a union of a series of zero sets of dchar-sets of the parametric dps DPS(θ).
The algorithm mainly consists of three steps.
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Step 1 Producing DTEs DPS(θ) = 0. This is a routine task for Lie’s standard algorithm [1, Sect. 2.4], [2, Chap. 4].
Step 2 Determining the kernel algebra X0. Regard DPS(θ) = 0 as an identity in θ (θ is arbitrary), and let the

coefficients of θ and its derivatives be zero. Doing this, we get an extended system of PDEs and denote it
as DCS0 = 0. Obviously, for arbitrary θ we have

Zero(DCS0) ⊆ Zero(DPS(θ)). (10)

Hence, DCS0 = 0 corresponds to the kernel G0. Solving it (without parameters), we find the kernel algebra
X0.

Step 3 Determining the extensions InfV Xθ of X0 for the specializations of the parameter θ .

To do this, we decompose the zero set Zero(DPS(θ)) in terms of zero sets of dchar-sets as in (8) by using a proper
improvement of algorithm A. The improvement comes from the simplifications of computation for overcoming
the complexity of symbolic computation. In procedure (W), as discovered by Collins [44,45], the remainders Ri

and ITi have leading coefficients of their proceeding d-pols in DBSi as factors. From the inevitable occurrence of
such factors, the d-pols in the procedure become too large which render the computation difficult to be carried on
further. Thus, it is worthy to remove all such factors during the procedure to render smaller d-pols. Therefore, we
have to pay special attention to the so-called ‘removed factors’ occurring in implementation of the scheme (W).
This means, in the execution of Algorithm A on DPS(θ), we may encounter the factorable d-pol dp ∈ DPSi (θ) for
some i , such as,

dp = Q(θ) · P,

where P ∈ KX [∂U ] and Q(θ), called a removed factor, comes from IS terms of d-pols in the basic set DBSi and
depends on parameter θ . We remove the factor Q(θ) by means of replacing dp with P , i.e., simply by resetting
dp = P in DPSi (θ). Then we continue the algorithm on the simplified dps DPSi (θ) until ending the procedure of
Algorithm A. In the whole procedure we always do such a removing as long as it occurs. Here we denote the product
of all such removed factors through the notation RF(θ). As a result, according to the well-ordering principle (7) in
Theorem 2, we have the decomposition

Zero(DPS(θ)) = Zero(DCS1(θ)/IS1(θ) ∗ RF(θ)) ∪ Zero(DPS(θ), IS1(θ)) ∪ Zero(DPS(θ), RF(θ)),

after the first execution of Algorithm A. Here IS1(θ) is the ISP of DCS1(θ). After removing the non-zero factors in
IS1(θ) ∗ RF(θ), we rewrite the above decomposition as

Zero(DPS(θ)) = Zero(DCS1(θ)/� j I1 j ∗ �k I 1
k ) ∪ j Zero(DPS(θ), I1 j ) ∪k Zero(DPS(θ), I 1

k ), (11)

where I1 j ∈ KX [∂U ] and I 1
k depends on parameter θ and its derivatives only. If DCS1(θ) corresponds to the kernel

G0, then from (10) we delete the first part of the above decomposition. This cancelation is always done as long as
the case of dchar-set corresponds to the kernel algebra in further decompositions.

For the non-dchar-sets (second and third parts) of the above decomposition, we use Algorithm A again to obtain
a further decomposition. For the second part we compute the dchar-set of the extended dps DPS(θ) ∪ I1 j . In the
third part, we compute the dchar-set of DPS(θ) under the side condition I 1

k = 0 (i.e., the classifying equation).
We obtain a further decomposition of (11) in terms of zero sets of dchar-sets of DPS(θ) and zero sets of some
non-dchar-sets. On these non-dchar-set parts in a subsequent decomposition, we repeat the same procedure further
and further. Wu’s results (8) and algorithm scheme (W) guarantee that the above procedure terminates in finitely
many steps. Hence we obtain the final decomposition

Zero(DPS(θ)) = ∪i Zero(DCSi (θ)/� j Ii j ) ∪k Zero({DCS′
k(θ), ClEk(θ)}/�l I k

l ), (12)

where DCSi (θ) is the dchar-set of DPS(θ) without associated classifying equations; DCS′
k(θ) is the dchar-set of

DPS(θ) with the associated classifying equations ClEk(θ) = 0; Ii j and I k
l are d-pols obtained from the ISP

of DCSi (θ), DCS′
k(θ) and removed factors RF(θ). Thus, we have the complete decomposition of the solution set

of DPS(θ) = 0 in terms of zero sets of dchar-sets through expression (12) and all classifying equations ClEk(θ) = 0
appearing in the parts of DCS′

k(θ). This yields the complete symmetry classification of the family of PDEs in terms of
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the dchar-sets decomposition (12). Each branch of the right-hand sides of (12) corresponds to a class of symmetries
and associated parameters.

The above procedure yields the following theorem and algorithm:

Theorem 4 (Classification theorem) For a given family of PDEs (2) with parameter θ , let DPS(θ) = 0 be the
set of DTEs of InfV Xθ for the maximal symmetry Gθ . Then the decomposition (12) yields the complete symmetry
classification of the family of PDEs in the sense that each class of symmetries corresponds to a dchar-set.

Algorithm B: The complete symmetry classification for a parametric family of PDEs.
Input: A family of PDEs �(θ; X, ∂U ) = 0 with some parameter θ .
Output: Classifying equations and corresponding classification branches.

Begin
Step 1: Produce DTEs DPS(θ) = 0 (Use the standard Lie’s algorithm in (3));
Step 2: Determine the kernel algebra X0 (Use Algorithm A to solve DCS0 = 0);
Step 3: Construct the decomposition (12) for the dps DPS(θ) (Use Algorithms A);

End
This algorithm gives a mechanical way to directly and systematically obtain the complete symmetry classifica-

tion for a given parametric family of PDEs in the sense of obtaining all classifying equations and corresponding
well-ordered equations of InfV Xθ .

In order to obtain final specific expressions of InfV Xθ , one has to explicitly determine each branch in decom-
position (12). This is equivalent to solving DCSi (θ) = 0 and DCS′

k(θ) = 0 with ClEk(θ) = 0. Because of the
well-ordered structure (see Examples 1, 2) of the dchar-sets, these PDEs are more easily solved than the original
system DPS(θ) = 0. Although this integration procedure is not constructive in general [23], the well-ordered
structure provides us with more help to get explicit solutions to these equations and enhance the efficiency in the
applications of existing algorithms and CAS packages. In our examples (see Sect. 4), all explicit integrations of
equations corresponding to dchar-sets are obtained by hand calculation. Actually, one may use many techniques to
simplify integrations. One of them is to use equivalence transformations. If the solutions to each classifying equation
can be solved in advance, then we use a representative of the solutions under admitted equivalence transformations
to determine the corresponding symmetries. This significantly simplifies the classifying computation (see example
in Sect. 4.2).

4 Applications

We give some illustrative examples to show applications and the efficiency of Algorithm B. In the rest of this paper,
we use ci to denote an arbitrary constant in a symmetry.

4.1 Potential symmetry classification of a linear wave equation with a parameter

We give a potential symmetry classification of the wave equation

uxx = H(x)utt , (13)

with parameter θ = H(x) �≡ 0 to illustrate our classification algorithm. An equivalent potential system of the
equation is

vt − ux = 0, vx − H(x)ut = 0. (14)

Suppose that PDE system (14) admits a classical symmetry with InfV

X = ξ(x, t, u, v)
∂

∂x
+ τ(x, t, u, v)

∂

∂t
+ η(x, t, u, v)

∂

∂u
+ φ(x, t, u, v)

∂

∂v
. (15)

Now, our task is to determine functions ξ, τ, η, φ in (15) and H in (14) and show whether or not the original equa-
tion (13) admits potential symmetries, i.e., at least one of the functions ξ, τ, η depends on the potential variable v.
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4.1.1 Step 1: Producing DTEs

From (3), we get the determining equations DPS = 0. Here

DPS =

⎧

⎪⎪⎨

⎪⎪⎩

ξu − τv, H(x)ξv − τu, φt − ηx ,

ξx − τt − ηu + φv, H(x)(ξt − ηv) − τx + φu,

H(x)(ξt + ηv) − τx − φu, φx − H(x)ηt ,

H(x)(ξx − τt + ηu − φv) + H ′(x)ξ,

⎫

⎪⎪⎬

⎪⎪⎭

(16)

which depends on parameter θ = H(x).

4.1.2 Step 2: Determining the kernel algebra X0

For arbitrary parameter θ = H(x), the DTEs DPS = 0 are further reduced to DCS0 = 0. Here

DCS0 = {ξ, τx , τt , τu, τv, ηv, ηt , φu, φx , ηu − φv, φt − ηx }.
Hence, by solving DCS0 = 0, the infinitesimal functions of the principal symmetry are easily obtained in terms of
the zero set,

Zero(DCS0) = {ξ = 0, τ = c1, η = c2x + c3u + c4, φ = c2t + c3v + c5} . (17)

4.1.3 Step 3:Determining extensions of the kernel algebra X0

4.1.3.1 Step 3.1: Calculating the zero decomposition of the dps DPS. We execute the Algorithm B under the rank
x ≺ t ≺ ξ ≺ τ ≺ φ ≺ η, and obtain the zero decomposition (12) given by

Zero(DPS) = Zero(DCS1/I11) ∪ Zero({DCS2, I11}/I21) ∪ Zero(DCS3, I21), (18)

where

DCS1 =
⎧

⎨

⎩

ξ, τx , τt , τu, τv, ηv, φu, φvv, φtv, φxv,

ηu − φv, ηx − φt , H(x)ηt − φx ,

H(x)(H(x)φt t − φxx ) + H ′(x)φx ,

⎫

⎬

⎭
,

DCS2 =

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

τu, τv, τx + 2φu, 2H(x)H ′(x)τt − (3H ′(x)2 − 2H(x)H ′′(x))ξ,

ηx − φt , H(x)ηt − φx , 2H(x)(ηu − φv) + H ′(x)ξ, H(x)ηv − φu,

ξu, ξv, H(x)ξt + 2φu, H(x)H ′(x)ξx − (H ′(x)2 − H(x)H ′′(x))ξ,

φvv, φuu, φuv, H(x)(H(x)φt t − φxx ) + H ′(x)φx ,

H(x)H ′(x)φxu − (2H ′(x)2 − H(x)H ′′(x))φu,

H(x)2 H ′(x)φtv − (H ′(x)2 − H(x)H ′′(x))φu,

2H(x)H ′(x)2φtu − (H ′(x)2 H ′′(x) − 2H(x)H ′′(x)2 + H(x)H ′(x)H (3)(x))ξ,

2H(x)H ′(x)2φxv − (H ′(x)2 H ′′(x) − 2H(x)H ′′(x)2 + H(x)H ′(x)H (3)(x))ξ.

⎫

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

DCS3 =

⎧

⎪⎪⎨

⎪⎪⎩

ξtu − ξxv, H(x)ξvv − ξuu, H(x)ξtv − ξxu, H(x)ξt t − ξxx ,

H(x)ξt − τx , ξx − τt , H(x)ξv − τu, ξu − τv,

ηx − φt , H(x)ηt − φx , ηu − φv, H(x)ηv − φu,

φtu − φxv, H(x)φvv − φuu, H(x)φtv − φxu, H(x)φt t − φxx ,

⎫

⎪⎪⎬

⎪⎪⎭

,

with

I11 = 2H ′(x)4 H ′′(x) − 2H(x)H ′(x)
2 H ′′(x)

2 − 4H(x)2 H ′′(x)
3 + 5H(x)2 H ′(x)H ′′(x)H (3)(x)

− H(x)2 H ′(x)
2 H (4)(x);

I21 = H ′(x).

4.1.3.2 Step 3.2: Solving for the zero sets in the zero decomposition. It is noticed that in the first branch
Zero(DCS1/I11) in (18) has no classifying equation. In the second branch Zero(DCS2, I11/I21), there is a classifying
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equation ClE1(θ) = I11 = 0. In the third branch Zero(DCS3, I21), there is a classifying equation ClE2(θ) = I21 = 0.
The set of equations DCS1 = 0; DCS2 = 0; DCS3 = 0 is a well-ordered system which is more easily integrated
by hand, viz.,

Zero(DCS1/I11) = {ξ = 0, τ = c1, η = c2u + a(x, t), φ = c2v + b(x, t)} , (19)

where (a(x, t), b(x, t)) is any solution of (14);

Zero({DCS2, I11}/I21) =
⎧

⎨

⎩
ξ = g(t)

H(x)

H ′(x)
, τ = 3H ′(x)2 − 2H(x)H ′′

2H ′(x)2

t∫

g(s)ds + c1,

η =
(

H(x)H ′′ − 3H ′(x)2

2H ′(x)2 g(t) + c2

)

u − H(x)

2H ′(x)
g′(t)v + a(x, t),

φ = − H(x)2

2H ′(x)
g′(t)u +

(
H(x)H ′′ − H ′(x)2

2H ′(x)2 g(t) + c2

)

v + b(x, t)

⎫

⎬

⎭
, (20)

where σ is an arbitrary constant and g(t) satisfies

H ′(x)

H(x)2

(
3H ′(x)2 − 2H(x)H ′′(x)

2H ′(x)2

)′
= σ = g′′(t)

g(t)
. (21)

Here the parameter H(x) satisfies I11 = 0 and (21). Since (21) implies I11 = 0, it follows that (21) is equivalent
to the equation I11 = 0;

For I21 = 0, let H(x) = α2. Then

Zero(DCS3, I21) =

⎧

⎪⎪⎨

⎪⎪⎩

ξ = f (x, t, αu − v) + g(x, t, αu + v),

τ = α(− f (x, t, αu − v) + g(x, t, αu + v)) + F(x, t),
η = 1

α
(− f̄ (x, t, αu − v) + ḡ(x, t, αu + v)) + F̄(x, t),

φ = f̄ (x, t, αu − v) + ḡ(x, t, αu + v),

⎫

⎪⎪⎬

⎪⎪⎭

, (22)

where functions (y, z) = ( f, g) and (y, z) = ( f̄ , ḡ) satisfy

yx + αyt = 1

2
(k(x, t) + h(x, t)), zx − αzt = 1

2
(k(x, t) − h(x, t)), (23)

and P = F(x, t) and P = F̄(x, t) are any two solutions of the system

Px (x, t) = αh(x, t), Pt (x, t) = k(x, t), (24)

in which k(x, t) and h(x, t) are arbitrary functions.
Now, we get the complete potential symmetry classification of the wave equation (13) through (14), (18), and

(19), (20) with (21), (22) with (23) and (24). The classification results are summarized in the following Table 1. Note
that the dchar-sets DCS0 and DCS1 do not yield potential symmetries. If g′(t) �= 0, then the dchar-set DCS2 yields
potential symmetries for equation (13). The dchar-set DCS3 yields an infinite number of potential symmetries.

These results cover those given in [2, pp. 182–188]. It is noticed that the symmetries corresponding to DCS3

obtained in our classification were not mentioned in [2, pp. 182–188]. In addition, it is worthy to note that the solu-
tions in (19), (20) and (22) present unifying expressions for the symmetries corresponding to various parameters
H(x) of the solutions of (14), (21), (23) and (24), respectively.

Table 1 Table potential symmetry classification of (13)

H(x) dchar-set ξ, τ, η, φ Condition Potential

Arbitrary DCS0 (17) No No

I11 �= 0 DCS1 (19) a, b ∈ Zero (14) No

I11 = 0, I21 �= 0
⇔ (21)

}

DCS2 (20) σ, g ∈ Zero (21), a, b ∈ Zero (14)

{

Yes
g′ �= 0

I21 = 0 DCS3 (22) ( f, g), ( f̄ , ḡ) ∈ Zero (23), (F, F̄) ∈ Zero (24) Yes, infinite
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4.2 Potential symmetry classification of a nonlinear wave equation with a parameter

We consider a potential symmetry classification of the nonlinear wave equation utt +ut = (F(u)ux )x . The classical
symmetry classification of this equation was considered in [46]. A potential system is given by

vt = F(u)ux , vx = ut + u. (25)

4.2.1 Step 1: Producing DTEs

By the standard Lie algorithm, we get the DTEs DPS=0 for the classical symmetries with InfV X = ξ(x, t, u, v)∂x +
τ(x, t, u, v)∂t + η(x, t, u, v)∂u + φ(x, t, u, v)∂v for the potential system (25). Here

DPS =

⎧

⎪⎪⎨

⎪⎪⎩

F(u)(ηx + uτx ) + uφu − φt ,

F(u)(ηv + uτv) − φu,

F(u)τx + uξu − ξt ,

F(u)(ηu − φv − ξx + τt ) + F ′(u)η,

F(u)τv − ξu,

ηu − φv + ξx + 2uτu − τt ,

uηu − ηt + φx + u2τu − uτt − η,

ξv − τu .

⎫

⎪⎪⎬

⎪⎪⎭

.

4.2.2 Step 2: Determining the kernel algebra X0

Obviously, this algebra corresponds to

DCS0 = {ξx , ξt , ξu, ξv, τx , τt , τu, τv, φx , φt , φu, φv, η} = 0,

which yields the infinitesimal functions of X0 given by

Zero(DCS0) = {ξ = c1, τ = c2, φ = c3, η = 0}.

4.2.3 Step 3: Determining the extended algebra Xθ

Under the basic rank ξ ≺ η ≺ τ ≺ φ, we execute Algorithm B on the dps DPS and firstly obtain the decomposition

Zero(DPS)=Zero(DPS, IS1), (26)

in which

IS1 = IS2 F(u)F (4)(u) − 3F(u)2 F (3)(u)2 + 2F ′(u)(8F(u)F ′′(u) − 3F ′(u)2)F (3)(u)

+ 6F ′′(u)2(F ′(u)2 − 2F(u)F ′′(u)).

Note that all classifying equations come from IS1 = 0. Using again the algorithm for the dps under IS1 = 0, we
have the further decomposition

Zero(DPS,IS1) = Zero(DCS1, IS1/IS3 ∗ IS4) ∪ Zero(DPS, IS3/IS2) ∪ Zero(DPS, IS4/IS2)

∪Zero(DPS, IS2). (27)

Here the dchar-set DCS1 = 0 is given by

DCS1 =

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ηv, ηt , ηx , φu, φt , ξu, ξt , τv, τt , τx ,

IS2 F(u)ηu + (3F ′(u)3 − 4F(u)F ′(u)F ′′(u) + F(u)2 F (3)(u))η,

2IS2 F(u)ξv + (F ′(u)2 F ′′(u) − 2F(u)F ′′(u)2 + F(u)F ′(u)F (3)(u))η,

2IS2 F(u)ξu + η(F ′(u)2 F ′′(u) − 2F(u)F ′′(u)2 + F(u)F ′(u)F (3)(u)),

2IS2 F(u)ξx + [F ′(u)(3F ′(u)2 − 2F(u)F ′′(u) − uF ′(u)F ′′(u) − uF(u)F (3)(u))

+2uF(u)F ′′(u)2]η,

2IS2 F(u)φv + η(9F ′(u)3 − 10F(u)F ′(u)F ′′(u) + uF ′(u)2 F ′′(u) − 2u F(u)F ′′(u)2

+2F(u)2 F (3)(u) + uF(u)F ′(u)F (3)(u)),

2IS2 F(u)φx + η(6F(u)F ′(u)2 − 6uF ′(u)3 − 4F(u)2 F ′′(u) + 8uF(u)F ′(u)F ′′(u)

−u2 F ′(u)2 F ′′(u) + 2u2 F(u)F ′′(u)2 − 2uF(u)2 F (3)(u) − u2 F(u)F ′(u)F (3)(u))

⎫

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

and
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IS2 = 2F(u)F ′′(u) − 3F ′(u)2,

IS3 = F ′(u)
2 F ′′(u) − 2 F(u) F ′′(u)

2 + F(u) F ′(u) F (3)(u),

IS4 = 6 F ′(u)
3 − 6 F(u) F ′(u) F ′′(u) + F(u)2 F (3)(u).

At this point, the use of equivalence transformations admitted by system (25) can simplify subsequent compu-
tations. It is observed that system (25) admits linear equivalence transformations

x ′ = ax + b, t ′ = t + d, u′ = lu + m, v′ = alv + amx + p, F ′ = F/a2, (28)

where a, b, d, l, m, p are arbitrary constants al �= 0. In this example, we show how equivalence transformations
involving scalings and translations in u and scalings in F simplify the computations.

Solving the classifying equations IS3 = 0, IS4 = 0 and IS2 = 0, we can select representatives of their solutions
under equivalence transformation (28) as F(u) = uα, F(u) = eu for IS3 = 0 in which α is an arbitrary constant;
F(u) = u−2 and F(u) = u−1 for IS4 = 0; and F(u) = u−2 for IS2 = 0.

The classifying equation IS1 = 0 can be reduced to

2(c2 + c1u)F(u) + (c1u2 + (c2 − c3)u − c4)F ′(u) = 0, (29)

for arbitrary constants ci , i = 1, 2, . . . , 5.
For simplicity, for c1 �= 0, we let b = (c2 − c3)/(2c1),� = −c4/c1 − b2. Then the solutions of the classifying

equation (29) lead to the following cases.

4.2.4 Case A: c1 �= 0

4.2.4.1 Subcase A.1: For � > 0,

F(u) = k
(

(u + b)2 + �
)−1

exp

(

−c2 + c3√
�

arctan
u + b√

�

)

.

Here and in the sequel k is an integration constant. This case is equivalent to F(u) = (u2 + 1)−1eα arctan u under
equivalence transformations (28) for any real number α;

4.2.4.2 Subcase A.2: For � < 0,

F(u) = k
(

(u + b)2 + �
)−1

exp

(
c2 + c3√−�

arctanh
u + b√−�

)

.

This case is equivalent to F(u) = (1 − u2)−1eαarctanhu under equivalence transformations (28) for any real number
α;

4.2.4.3 Subcase A.3: For � = 0,

F(u) = k (u + b)−2 exp

(
c2 + c3

u + b

)

.

This case is equivalent to F(u) = u−2e
1
u under equivalence transformations (28);

4.2.5 Case B: c1 = 0

4.2.5.1 Subcase B.1: For c2 − c3 �= 0,

F(u) = k((c2 − c3)u − c4)
− 2c2

c2−c3 .

This is equivalent to F(u) = uα under equivalence transformations (28) for any real number α;
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4.2.5.2 Subcase B.2: For c2 − c3 = 0,

F(u) = ke
2c2
c4

u
.

This is equivalent to F(u) = eu under equivalence transformations (28).
Obviously, Case B corresponds to the solutions set of IS3 = 0.
Solving the equations of DCS1 = 0, we have

Zero(DCS1, IS1/IS3 ∗ IS4) =
{

ξ = c2x + c1v + c5, τ = c1u + c6,

η = 2(c1u + c2)F(u)/F ′(u),
with c1 �= 0.

}

(30)

This is a unifying expression for the corresponding symmetries of Subcases A.1, A.2 and A.3.
Repeating our algorithm for c1 = 0, or equivalently for F(u) = uα, F(u) = eu under (28), we have

Zero(DPS, IS3/IS1) ∪ Zero(DPS, IS4/IS1)

= Zero(DCS2) ∪ Zero(DCS3) ∪ Zero(DCS4), (31)

with F(u) = eu for DCS2 and F(u) = uα , α �= −2,−4/3 for DCS3 and F(u) = u−4/3 for DCS4;

Zero(DPS, IS2) = Zero(DCS5), (32)

with F(u) = u−2.
Combining (26), (27), (30–32) and the equivalence transformation (28), we get the decomposition (12) for the

DPS.
Here

DCS2 = {ηx , ηt , ηu, ηv, τx , τt , τu, τv, ξt , ξu, ξv, φx − η, 2ξx − η, 2φv − η, },
DCS3 = {τx , τt , τu, τv, ηx , ηt , ηv, φx , φt , φu, uηu − η, 2uφv − (α + 2)η, 2uξx − αη},
DCS4 = {τx , τt , τu, τv, ξt , ξu, ξv, ηx , ηt , ηv, φx , φt , φu, uηu − η, 3uφv − η, 3uξx + 2η},

DCS5 =

⎧

⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

φx , φv, ξxu, ξxt , ξxx , η − uηu − u2ξv,

φu − 2uξu + 2ξt , φt − 2u2ξu + 2uξt , ηv − u3ξu + 2u2ξt ,

ηx − u4ξu + u3ξt , uξuv − ξtv, ξvv − ξt − ξt t ,

2uξu + u2ξuu − ξt − ξt t , uξtu − ξt t ,

η + ηt + u2ξv + uξx , u2ξu − uξt + ξxv, u2ξu − τv, ξv − τu,

η + u2ξv + uξx − uτt , u3ξu − u2ξt + τx .

⎫

⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

and

Zero(DCS2) = {ξ = c1x + c3, τ = c4, η = 2c1, φ = c1v + 2c1x + c2},
Zero(DCS3) =

{

ξ = α

2
c2x + c4, τ = c1, η = c2u, φ = 2 + α

2
c2v + c3

}

,

Zero(DCS4) =
{

ξ = −2

3
c2x + c4, τ = c1, η = c2u, φ = 1

3
c2v + c3

}

,

Zero(DCS5) =

⎧

⎪⎪⎨

⎪⎪⎩

ξ = c1
u + (c2 + c1v)x + B

(

v, et u
)

,

τ = c4 + c1(ux − v) + e−t A
(

v, et u
)

,

η = − (

c2 + c1(v + ux) + e−t A
(

v, et u
))

u,

φ = c3 − 2c1(t + log u),

⎫

⎪⎪⎬

⎪⎪⎭

with AV (V, U ) = U 2 BU (V, U ), BV (V, U ) = AU (V, U ), and U = et u, V = v.
The cases Zero(DCSi ), i = 1, 2, . . . , 5 and corresponding classifying equations ISi = 0(i = 1, 2, 3, 4) yield

a complete potential symmetry classification of the original wave equation, in which DCS1 and DCS5 efficiently
extend the classical symmetries of the wave equations with the classifying equation IS1 = 0. Its solutions are given
in Case A and Case B. The DCS5 corresponds to a linearizable case.

123



196 T. Chaolu, P. Jing

Remark Of course, the equivalence transformations (28) are not complete. For example, the PDE system (25) has
additional equivalence transformation x∗ = εv+x, t∗ = log(εu+1)+t, u∗ = u/(1+εu), v∗ = v, F∗ = (1+εu)2 F
with generator v∂x + u∂t − u2∂u + 2uF∂F . Determining the set of all equivalence transformations is equivalent to
determining the classical symmetries of the extended system consisting of the given PDEs with auxiliary equations
involving the parameter, which are set up by representing the parameter as being independent of some variables in
X×∂U (see details in [24,27]). Additional equivalence transformations may help to further simplify the presentation
of the symmetry classification (see an example in [33]), but this is not a focus of the present paper.

4.3 Nonclassical symmetries of Burgers’ equation with a parameter

In the following we determine nonclassical symmetries of Burgers’ equation ut + H(u)u2
x + uxx = 0 with a

parameter θ = H(u) �= 0.
Suppose the corresponding InfV is X = ∂t + ξ(x, t, u)∂x + η(x, t, u)∂u . Thus the DTEs DPS=0 are given by

DPS = {H(u)ξu − ξuu, H(u)ηu + ηuu − 2ξξu − 2ξxu + ηH ′(u),

ηt + ηxx + 2ηξx , 2H(u)ηx + 2ηxu + 2ηξu − ξt − 2ξξx − ξxx }.
This is a nonlinear dps. Under the basic rank x ≺ t ≺ u ≺ ξ ≺ η and by Algorithm B, we obtain the dchar-set of
the dps given by

DCS = {ξu, ηt + ηxx + 2ηξx , 2H(u)ηx + 2ηxu − ξt − 2ξξx − ξxx , H(u)ηu + ηuu + ηH ′(u),

2H(u)ηt + 2ηtu + 4H(u)ηξx + 4ηuξx + 2ξ2
x + ξxt + 2ξξxx + ξxxx },

for any value of the parameter θ = H(u) (no classifying equations exist) and

Zero(DPS)=Zero(DCS) = {ξ = γ (x, t), η = e− ∫

H(u)du(α(x, t)
∫

e
∫

H(u)dudu + β(x, t))},

where α(x, t), β(x, t), γ (x, t) satisfy

αt (x, t) + αxx (x, t) + 2α(x, t)γx (x, t) = 0,

βt (x, t) + βxx (x, t) + 2β(x, t)γx (x, t) = 0,

γt (x, t) + γxx (x, t) + 2γ (x, t)γx (x, t) = 2αx (x, t). (33)

This shows that Burgers’ equation admits a very rich set of nonclassical symmetries in terms of the unified expression
given in Zero(DCS).

Similarly we get the classical symmetries of Burgers’ equation with InfV X = ξ(x, t, u)∂x + τ(x, t, u)∂t +
φ(x, t, u)∂u . Here

ξ = (c1x + c4)t + 1

2
c2x + c5, τ = c1t2 + c2t + c3,

η = e− ∫

H(u)du
{(

1

2
(
1

2
c1(x2 − t) + c4x) + c6

) ∫

e
∫

H(u)dudu + γ (x, t)

}

for an arbitrary value of H(u) and γ = γ (x, t) satisfies γt + γxx = 0.

Remark Actually, the structure of the classical symmetries of Burgers’ equation shows that it can be linearized
to γt + γxx = 0 which does not contain any parameter [2, Chap. 6]. So in classical and non-classical symmetry
classifications no splitting cases arise. Here, we just emphasize the application of our algorithm to a nonlinear
system.
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5 Concluding remarks and some discussion

By using the dchar-set algorithm and the zero decomposition theorem given in Wu’s method (Theorem 3), we obtain
the complete decomposition of the solution set of the DTEs in terms of a series of zero sets of dchar-sets with all
classifying equations in (12). Based on the decomposition, we get an alternative algorithm for the complete symme-
try classification of a parametric family of PDEs. The classification in the algorithm is given by the correspondence
between each branch in the decomposition and a class of symmetries with associated classifying equations. The
well-ordered equations corresponding to dchar-sets in the zero decomposition are usually solved more easily than
the original one or provide a real simplification to determine an explicit symmetry classification.

Interesting and new aspects of our algorithm are as follows. This is a unified and systematic algorithm for more
general symmetry classifications of PDEs. The algorithm differs from existing algorithms by using a fundamentally
different theory and algorithm. The algorithm can also be easily used to solve other differential problems, such as
integrating factors, first integrals and conservation laws (classifications) of PDEs [47–50]. Particularly, from the
dchar-set of DTEs for symmetries, we may obtain more information about symmetries, such as symmetry dimen-
sion, symmetry structure, Taylor-series solutions of the DTEs, etc [4–8]. As far as the authors know, this is the first
paper in which the complete symmetry classifications of PDEs are systematically investigated by Wu’s method.

In order to compare with related works, let us describe in a few words some existing algorithms.
In [8,9], Schwarz described and implemented the algorithm involutuionSystem (package SYMSIZE), based on

the theory of differential equations of Riquier and Janet [19,20], to transform a linear system of PDEs into involutive
form. The algorithm can determine the size of the Lie symmetry group of a given system of PDEs without having
to integrate the corresponding DTEs.

In [6,7], Reid et al designed rif -algorithms which use a finite number of differentiations and algebraic opera-
tions to simplify an analytic (nonlinear) system of PDEs to what they call ‘a reduced involutions form’(rif-form),
which includes the integrability conditions of the system and satisfies a constant rank condition. An integration-free
algorithm based on the reduced form and formal power series analysis is developed to determine Lie symmetries
of PDEs and many other applications. The implemented CAS package rifsimp of the algorithm is available in
Maple.

In [11,12], Mansfield designed an algorithm to compute differential Gröbner bases for polynomial PDEs. Funda-
mental tools in the algorithm are the Kolchin–Ritt algorithm, a differential analogue of Buchberger’s algorithm with
pseduo-reduction instead of reduction, and the diffgrob2 package is implemented in Maple, which is designed
to calculate the elimination ideals, integrability conditions and compatibility conditions of a system of nonlinear
partial differential equations.

In [14,15], Boulier et al proposed Rosenfeld–Gröbner algorithms which borrow from the algorithms of
Seidenberg [51] the idea to combine Hilbert’s theorem on zeros and Ritt’s reduction algorithm. They decide the
membership problem in the radical ideal generated by finite differential polynomials set by successively eliminat-
ing all the unknowns appearing in the polynomial of the set. The implemented package diffalg based on the
algorithm is available in Maple. Many of these algorithms were motivated by symmetry analysis.

In [36, Chap. 3], [37], Wu developed a dchar-set method on the basis of the previous work of Ritt [22] for the
purpose of theorem proving. It is much different in theoretical and algorithmic aspects from its roots and those
mentioned above. The concept of dchar-sets is a key element in both Ritt’s and Wu’s theory. The concept of a
dchar-set is defined for an algebraic ideal generated by a dps in Ritt’s work, while the dchar-set in Wu’s method
is simply defined for the dps (bases of ideals). The main focus of Wu’s method is to directly deal with the zero
set of a dps. This method decomposes the zero set Zero(P) of a dps P into finitely many zero sets Zero(DCSi/ISi )

of the dchar-sets DCSi of the dps P. As a result, a fundamental relation provided by the dchar-set algorithm is a
decomposition (8), which is called a weak form decomposition.

To compute zero decompositions of finer form, the dchar-set method proceeds further by imposing an irreduc-
ibility requirement and computing irreducible dchar-sets. This process provides us with similarity relations (8)
where the DCSi are irreducible. This is called a strong-form decomposition. In practice, it is more efficient to com-
pute weak forms than strong forms. A weak form is also very useful, as its components possess many interesting
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algebraic properties [22, Chap. 5], [36, Chap. 3], [37]. Undoubtedly, there are other ways to achieve (8) besides
the algorithms in Wu [36, Chap. 3], [37]. For example, d-chain-sets here may be replaced by coherent autoreduced
sets in Rosenfeld [52]; elimination techniques in Seidenberg [51] may be combined with the dchar-set method.
In [53], a modification of Wu’s decomposition (8) is given by replacing the dchar-sets by so called differential
triangulation (d-tri) sets with coherent conditions instead of integrability conditions, which significantly reduces
the computation efforts. In theorem proving, the concepts of differential-algebra ideals are used. This indicates at
some level the relationship between Wu’s method and algebra ideals. Wu’s method was developed originally for
mechanical theorem proving.

All of these algorithms have in commons the idea of reduction. A consistent theme in these algorithms is the idea
that one first reduces the PDEs under consideration to some kind of ‘standard form’ (e.g. Gröbner basis, dchar-set,
rif-form, involutive form, etc), then integrates or uses the obtained ‘well ordering’ system. The reduction operations
used in these algorithms have origins in the works of Janet–Riquier [20], Seidenberg [51], Ritt [22, Chap. 5], etc.
However, the procedures for obtaining the reduced ‘standard form’ are different.

Our classification algorithms in this paper are stated by utilizing only the weak form of zero decomposition
results (8) and Wu’s algorithm for dchar-sets of a dps. Assuredly, if we use the modified algorithm in [53], we will
get a refinement of the classification algorithm by following the same idea in the paper. Moreover, the other methods
mentioned above can be used for solving symmetry-classification problems [34]. Here, we just give an alternative
method for solving symmetry-classification problems.
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